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According to the theory of Ikeda, Parker & Sawai (1981), meander migration rate 
at a point depends on a convolution integral of channel cwvature from that point 
upstream. The problem can be quantified in terms of the bend equation. The time 
development of periodic bend trains of finite amplitude is analysed using the method 
of two-timing. The results apply near the critical wavenumber for the growth of bends 
of infinitesimal amplitude. 

A finite-amplitude equilibrium state bifurcating from the null state at the critical 
wavenumber was delineated by Parker, Diplas & Akiyama (1983): they called the 
resulting solution the Kinoshita curve. It is found herein that this equilibrium state 
is unstable. Bends of longer Cartesian wavelength grow to cutoff. Shorter bends are 
obliterated. Nevertheless, in either case, the bend train tends towards the shape of 
the Kinoshita curve. 

The theory suggests that some growing bends may be stabilized by local obstructions 
to downstream migration. The obstructions would cause an effective reduction in 
Cartesian wavelength, moving the bend from the unstable regime to the stable 
regime. A rather crude check of bend shape and rates of deformation generally lends 
support to the analysis. 

1. Introduction 
The shape and deformation of finite-amplitude meander bends have been the 

subject of much speculation, but have only recently yielded to analytical treatment. 
Ikeda, Parker & Sawai (1981) coupled Engelund’s (1974) theory of flow in bends with 
a kinematic treatment of bank erosion in order to delineate the bend equation, a 
nonlinear equation describing the deformation of meander trains. They performed 
a linear stability analysis, and delineated a critical wavenumber above which bends 
are stable, and below which bends are unstable. They also determined a characteristic 
wavenumber of maximum instability. Similar linear analyses have been performed 
by Kitanidis & Kennedy (1984) and Blondeaux & Seminara (1985). 

Parker, Sawai & Ikeda (1982) used an expansion in amplitude to study nonlinear 
effects on bend growth and deformation. They found that, as amplitude increases, the 
initial downstream migration rate declines. A periodic bend train was found to 
develop a characteristic skewing, or asymmetry, that is commonly seen in nature 
(Kinoshita 1961 ; Carson & Lapointe 1983). This asymmetry can be seen in figure 1. 
The nonlinear analysis, however, is not valid for a greater time period than that of 
the linear analysis. 

Parker, Diplas & Akiyama (1983) examined the bend equation for finite-amplitude 
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A = 2.89 

FIGURE 2. Family of periodic solutions of permanent form obtained to 
third order. Flow is from left to right. 

solutions of permanent form. An equation rather similar to that of the Van der Pol 
oscillator was found to govern such solutions. The family of solutions, shown in 
figure 2, is remarkably reminiscent of the shape of many high-amplitude bends in 
nature (e.g. figure 1 ; see Nanson & Hickin 1983). 

The discovery of solutions of permanent form appeared to lend support to previous 
speculations that there existed some finite-amplitude state to which bend trains 
tended in the absence of obstructions (e.g. Jefferson 1902). Once this state was 
reached, bends would migrate downstream without changing amplitude. It is the 
purpose of the present analysis to show that the solutions of permanent form are in 
fact unstable. 

The analysis applies only to the simplified case of periodic bend trains. It is shown 
that the ultimate fate of bends of sufficiently long wavelength is cutoff, and that the 
ultimate fate of bends of sufficiently short wavelength is obliteration by straightening. 
As a bend train deforms, however, the predicted shape is found to be essentially that 
of the solutions of permanent form; only the wavenumber differs. 

Herein water discharge is assumed to be constant, with the flow maintained at 
bankfull discharge. 

2. Flow mechanics; bank erosion and deposition 
A complete discussion of the governing equations is found in Ikeda et al. (1981). 

Centreline values of water-surface slope I, vertically averaged downstream velocity 
U,  and depth H are allowed to vary in time as sinuosity increases, but not in the 
downstream direction. U ,  H, and I are constrained by the relations 

where Cf is a friction factor and q denotes water discharge per unit width; both are 
taken to be constant. Sinuosity S is the average of the ratio of centreline arc length 
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FIGURE 3. ( a )  -, banks; - - -, centreline; - - - -, locus of high velocity. ( b )  Definition diagram 
for the downstream velocity profile. (c)  Definition diagram for channel cross-section. 

to downvalley length; on geometric grounds, then, 

(2) 
I 1  -- s = (cose)-l, - - 
I, S’ 

where the overbar denotes averaging over one wavelength, and channel centreline 
deflection angle 0 is defined in figure 3 (a) .  Defining a dimensionless centreline velocity 
x = U/U,,, it is seen from ( 1 )  and (2) that 

= 8-i = ((cose)-l)i. (3) 
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As shown in figure 3 (a, b), vertically averaged downstream velocity is assumed to 
be linear in the normal ( f i )  direction, given by U+ubn,, where Ub denotes the 
difference between the downstream velocity near the left bank looking downstream 
(‘north’ bank in figure 3a) and the centreline velocity, and n* = f i / b ,  where b is the 
channel half-width. In  dimensionless form, this becomes ~ + u n , ,  where u = ub/U,. 
The physical significance of such a distribution can be seen by defining the normal 
coordinate of a locus of high velocity: 

P 1  

In figure 3 (a), the locus of high velocity leans against either the ‘north ’ bank (nu > 0) 
or the south bank (nu < 0), according to whether u is positive or negative. 

The following equation for u can be deduced : 

where s = d/H, denotes dimensionless centreline arc length, b* = b/H,, and the 
dimensionless channel centreline curvature is C = Ho/ro,  where ro is the centreline 
radius of curvature (see figure 3 a ) ;  by definition, 

ae 
as * 

C = - -  

Also F = U,/l/(gH,) denotes the Froude number, and A is a dimensionless scour 
factor given by 

(7) 
r 

A = A S , ,  
H 

where S, denotes the local lateral bed slope (figure 3c) .  In general A is of order unity; 
it increases with U (Kikkawa, Ikeda & Kitagawa 1976; Zimmerman & Kennedy 1978; 
Odgaard 1981) and thus changes with time. The details of the time variation are 
unimportant for the present analysis, however, so various constants are used. 

For typical values of A (2 - 15) and Froude numbers less than 0.5, the term 
containing F in ( 5 )  can be dropped; this is done herein. 

Ikeda et al. (1981) treated bank erosion as follows. Let f denote speed of normal 
channel shift, and let f = g/U,;  it is assumed that 

f = EOU,  

where E, is a coefficient of bank erosion. Parker (1982) and Beck (1983~)  have found 
values of E, based on bankfull flow ranging from 8.0 x lo-* to 3.5 x lo-’ for reaches 
of the Minnesota River, USA, and the Pembina River, Canada. 

Between (4) and (8), it is seen that 

f = 3xE0 nu.  

The channel centreline can be represented as a series of Lagrangian points (figure 4). 
The above equation defines an orthogonal mapping shown in figure 4, according to 
which each point in the channel is shifted normal to the centreline an amount 
proportional to the normal coordinate of the locus of high velocity nu. This mapping 
defines the migration evidenced by the scroll bars visible in figure 1 ,  and their 
orthogonals (Hickin 1974). 
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,Original centreline 

New centreline 

FIQURE 4. Illustration of the use of the orthogonal mapping to compute channel migration. 
-, banks; - - -, centreline; - - - -, locus of high velocity. 

’New centreline 

FIQURE 5. Channel migration as predicted by the algebraic relation (12a). 
Note that no downstream migration is realized. 

3. Observations on the mechanism of channel shifting 
A reduction of (5 )  and ( 8 )  yields the result 

= 1‘ f(s-s’)C*(s’) ds‘, 
m 

where 

(9) 

and f(s) = Eo[-xXS(s)+C,(A+2)~2 e-2Xces], (11)  

and S(s) denotes the Dirac function. The implication of (9) is that the rate of channel 
shift is linearly proportional to curvature C*, and influenced by channel shape at all 
points upstream. The term involving the Dirac function represents a free-vortex 
effect, which drives the locus of high velocity toward the inner bank; the term 
involving C, denotes the effect of friction, which cumulatively drives the locus of high 
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FIGURE 6. Examples of channel migration on the Beatton River, British Columbia, Canada. The 
numbers on the point bars indicate estimates of the time for formation of scroll bars, in years elapsed 
from the time of formation to the time of measurement. From Hickin & Nanson (1975) ; courtesy 
E. J. Hickin. 
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FIGURE 7. Plot of [ versus C* for bends of the Beatton River, Canada. 
Open circles denote points for which C* > 0.16. 

Parameter Value 

b 35 m 
U 1.56 m/s 
H 2.98 m 
Z 0.0003 
S 2.22 
X 0.767 
UO 2.04 m/s 
Ho 2.28 m 

Parameter 

A 

F 

b* 

1 0  

Cf 

kc 

EO 

Value 

0.000666 

0.00360 
0.431 
0.016 1 

1.85 x lo-* 

10 

15.3 

TABLE 1 .  Estimates of characteristic parameters at bankfull flow for the Beatton River, Canada 

velocity toward the outer bank. Previously Howard & Knutson (1984) have used a 
convolutional form similar to (9). 

Hickin & Nanson (1975) have proposed the local relationship 

5 = f(C*), (124  

based on scroll-bar spacing from the Beatton River, Canada. As is illustrated in 
figure 5, (12a) cannot predict downstream migration of the bend pattern. The 
failure is particularly apparent from the upstream inflection point to near the apex 
of a given bend. This region, however, tends to obliterate its own scroll bars, and is 
thus outside of the scope of the treatment of Hickin & Nanson (1975). 

From the apex to the downstream inflection point, a tendency toward developed 
bend flow is realized. This region also leaves the best scroll bars (figure 6), providing 
the raw material for the analysis of Hickin & Nanson (1975). For developed bend 
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FIGURE 8. Definition diagram for the derivation of (13). 

flow with constant curvature, (9) and (11)  reduce to 

6 = iEo AxC*. (12b) 

On figure 7, [ is plotted against C* for the data of Nanson & Hickin (1983), using 
information contained in Hickin & Nanson (1975) and Nanson (1977). Various 
measured parameters, including A and x ,  are given in table 1 .  It is seen that, for 
C* < 0.16, fl is linearly related to C*, with a coefficient of 7.08 x That is, (12b) 
is found to be accurate for appropriately small curvatures if E, takes the value 
1.85 x 

For value C* > 0.16, figure 7 indicates that 5 decreases rapidly, deviating from (12). 
This may be due to the fact that the deviation leading to (12) is valid only for small 
C* . 

4. The bend equation 
Let f and g denote, respectively, downvalley and crossvalley Cartesian coordinates 

(figure 3a), and C denote time; the corresponding dimensionless forms x, y and t are 
formed using the scales H ,  and U,. It is seen from figure 8 that 

Also, on geometric grounds, 

Thus (5 ) ,  (8), (13), and (14) reduce to the bend equation, 

where x is related to 8 via (3). 
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5. Solutions of permanent form 
The linear stability analysis of (15) performed by Ikeda et al. (1981) indicates that 

all infinitesimal disturbances propagate downstream. Let h denote the Cartesian 
wavelength of a sinusoidal disturbance, and k = 2xH,/A denote the dimensionless 
Cartesian wavenumber ; i t  is found that disturbances are stable if k > k, and unstable 
if k < k,, where 

k, = .\/(2A)Cf. (16) 

If c  ̂ is the downstream migration speed of the disturbance, and c = c^/Uo, then a t  
k = k, i t  is found that c = c,, where 

C, = AC,. (17) 

Parker et al. (1983) showed that (15) admits periodic solutions that migrate 
downstream a t  constant speed without changing form. I n  particular, if (15) is 
subjected to  the transformation 

2, = x - c t ,  t ,  = t ,  

assumed to  be independent of t,, and then transformed to  intrinsic coordinates, 
it is found that 

d2e d e  
ds ds 

x ?+ (c cos 8- AX2Cf) -+ 2xCf c sin 0 = 0. 

Parker et al. (1983) used a Stokesian expansion to obtain a third-order analytical 
solution to (18). Let A, denote arc meander wavelength, and K = 2xH,/h, denote 
the dimensionless arc wavenumber. They found the following results: where 8, is an 
angle amplitude taken to be small, 

where 4 = KS, and 

K = k,(i -he:), c = c,(i  -he:). (20) 

s = 1 +:e:, k = k,( i  +is;). (21) 

From the geometric relationship k = SK and (2), i t  is found that 

The family of solutions given by (19) are plotted in figure 2 for the value A = 2.89 
suggested as typical by Ikeda et al. (1981). It is readily seen that the solutions are 
skewed in a fashion reminiscent of figures 1 and 6. Parker et al. (1983) termed (19) 
the Kinoshita curve. 

6. Time development of finite-amplitude bends 
Parker et al. (1983) have shown that the class of solutions represented by (19) 

resembles actual finite-amplitude bends in many respects. The solutions represent, 
however, an equilibrium state that may or may not be stable. If this state is stable, 
as is illustrated in figure 9 ( a ) ,  then i t  can be expected that there is a limit to bend 
growth before cutoff. In  the absence of such random disturbances as varying 
floodplain erodibility and varying discharge, bends would grow in time to a specific 
amplitude, and thence migrate downstream without changing form. 



Time development of meander bends 

equilibrium 

1 -  P 

149 

0 

Stable 

[i 
1 2 

I Unstable eauilibrium. 

0 1 

klkc 

- 
2 

FIGURE 9. (a) Hypothetical stability diagram for which certain infinitesimal unstable waveforms 
would eventually reach finite-amplitude state of permanent form without cutoff. ( b )  Actual stability 
diagram for the bend equation. The equilibrium, which follows (42c), is unstable. All initially 
unstable bends are eventually cut off. 

Herein, however, i t  is shown that the solution (19) is not stable. At least to third 
order, the actual situation is as represented in figure 9(b). 

The method employed is that of two-time expansion in the vicinity of the point 
of neutral infinitesimal stability (Nayfeh 1973). Let 8, denote an initial-angle 
amplitude, again assumed to be small. Then in (15), 8 is expanded to third order as 

8 = 81,4(4, 70,72)+8:P.d4,70~72)~ (22) 

where = t ,  72 = eyt, (23) 

4 = kz, (24) 

k = kc(l -Bet). (25) 

represent ‘fast ’ and ‘slow ’ timescales, respectively, and 

where 

The parameter pis constrained to be of order unity. Note that p > 0 for infinitesimally 
unstable bends (k < kc). 
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Inserting (22)-(25) into (15) and reducing with the aid of (3), the following results 
are obtained: 

Again, the overbar denotes averaging over one wavelength. 

outlined in Nayfeh (1973). After considerable algebra, it is found that 
Equations (26) and (27) can be solved using the derivative-expansion procedure 

e(z,t) = 81p1+85p3, (28) 

(29a) where pi = 4 7 2 )  sin (# - kc cc 7 0  + b(72)) 7 

-11 sin3(q5-kcccr0+b(~2))+3 ~ c o s 3 ( q 5 - k C c c ~ , + b ( ~ , ) ) ] ,  C (29b) 

192 k C  

and 

An expression for dimensionless downstream migration speed c can be obtained to 
order 0; as follows. Let 

denote the total phase in (29a) and (29b). By definition, 

@ = 4 - kc cc 70 +b(72) (32) 

Substituting (32) into (33) and reducing with the aid of (31), it is found that 

The boundary condition on (30) is chosen so that p1 = 1 at t = 0, i.e. so that the 
initial angle amplitude of the lowest-order term in (28) is indeed 8,. It follows from 
(28) and (29u) that 

a(0)  = 1. (35) 
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7. Nonlinear stability analysis 

the aid of (14), (16) and (17), it is found that 
Equations (28), (29a) and (29b) can be transformed into intrinsic coordinates; with 

e = eIa sin(Ks-kcCc70+b(72)) 

1 (2A)t 
128 

& sin3(~~-k,c,7,+b(7~))+- cos3(~~-k,c,7,+b(7~)) , (36) 

where K = k,[l-f31(B+$2)]. (37) 

A comparison of (19) and (36) indicates that as bends develop in time, they take the 
same form as the equilibrium solutions, regardless of whether those solutions are 
stable. The only difference is that k is free to differ from the equilibrium value 
satisfying (21). 

Indeed, the equilibrium solution is recovered by setting da/d.r2 equal to zero in (30). 
It follows from (30) that, if a = a, and 0 = BIa, = 6, at equilibrium, 

/3 = -+;. (38) 

A substitution of this result into (25) and (34) yields (20) and (21), so the equilibrium 
solution is completely recovered. Since initially a(0) = 1, i t  follows that a bend with 
a wavelength such that 

maintains permanent form subsequently. 

(35) is 

B=-' 6' (39) 

The stability of this permanent form is governed by (30). The solution to (30) and 

where 
k: A 

7r = 6(1++A) 7 2 *  

The following can be easily verified from (40). If /3 < -Q, or from (25) 

k > kc(l  +p;,, (42a) 

k -= k,(l+p;), (42b) 

then all bends subside to the straight state. If, on the other hand, B > - t ,  or 

then infinite amplitude is reached in a finite amount of time. 
The result is schematized in figure 9(b). It is seen that the line of equilibrium 

k = k,( 1 + p!) (424 

curves to the right on the (k,O,)-plane, so that the equilibrium state is unstable. 
Sufficiently short bends are obliterated. Sufficiently long bends continue to grow at 
a rate that accelerates as angle amplitude (and bend curvature) increases. It is 
likewise seen from (34) that, for bends that grow in amplitude, the downstream 
migration rate declines in time. 

The above picture is valid only to the extent that the present third-order analysis 
applies. Beck ( 1983 b) ,  however, has confirmed these conclusions via numerical 
calculations. 

In fact, bends do not reach infinite amplitude in a finite amount of time. Rather, 
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X 

FIGURE 10. Bend shape at incipient neck cutoff (0, = 121') for A = 10. 

3 -2  - I  0 1 2 3 4 

B 
FIGURE 1 1 .  Plot of the characteristic dimensionless time for 

angle amplitude to change from 0, to OF. 

they cut off. Assuming a value of 20 for the parameter h,/b (Leopold, Wolman & 
Miller 1964), and a value of 10 for A (appropriate for the Beatton river), it  is readily 
shown the the Kinoshita curve (19) is subject to  neck cutoff at an angle of 121", as 
shown in figure 10. 

Equations (28), (29a), (29b), (40). and (41) can be used to derive a formula for the 
amount of time required for a bend to  increase (decrease) in angle amplitude from 
an initial value of 8, to  a final value of 6,; i.e. the time required for the parameter 
a to change from its initial value of unity to a = 8,/61. From (40), the dimensionless 
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X 

FIGURE 12. (a) Time development of an unstable bend, OI = 15'. The parameter At is defined in 
(44). (b) Time development of a stable bend; 8, = 30". The parameter At is defined in (44). 

time increment AT, is 

The required dimensioned time interval At is found to be equal to HoAt/ (UoEob*) ,  
where 

In figure 11, AT, is plotted as a function of /3 and 8,/OI. Clearly, for bends near 
the equilibrium state (/3 = -i) ,  change is very slow. As bends become longer than 
the equilibrium wavelength (/3 increases), growth increases in rapidity, as evidenced 
by declining values of AT,. 
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8. Discussion 
For the purpose of providing a fairly typical illustration of the consequences of 

the theory, values of A and k, appropriate for the Beatton River are used. From 
table 1 and (16) i t  is found that k, z 0.0161, corresponding to a critical Cartesian 
wavelength of 890m. Recalling that small-amplitude bends must have a longer 
Cartesian wavelength in order to grow, this value appears to  be in the right range 
for the bends of the Beatton River (figure 6). 

I n  figure 12, the time development of two-bend trains are considered. The first bend 
has an initial angle amplitude of 8, of 0.261 (15O), and a wavenumber k equal to  
0.794kC ( p  = 3). The prediction is carried to cutoff, even though the analysis may 
not be valid in detail at such a high amplitude. I n  the case of the second bend, the 
initial amplitude 8, is 0.524 (30°), and k is equal to 1.27 k, ( p  = - 1) .  

The growing bend exhibits a simple shape that is nevertheless reminiscent of the 
more complicated shapes of figures 1 and 6. The subsiding bend illustrates that the 
theory can predict deposition on the outside, and erosion on the inside, of short bends. 
This phenomenon is not seen often, because such bends tend to be self-obliterating. 
Nevertheless, Woodyer (1975), Hickin (1979), and Reid (1983) have observed such 
bends. 

The present analysis suggests that bends that initially grow continue to  do so until 
cutoff, meanwhile accelerating their growth rate. Indeed, cutoffs are a very prominent 
feature of the floodplains of meandering streams (figure 1) .  At cutoff, however, 
curvature C* is often sufficiently high to invalidate the present analysis. It may be 
that an inclusion of terms dropped in deriving ( 5 )  would cause the erosion rate to  
decline (or even reverse) with increasing C*, so that some bends might not be cut off. 
Another possibility exists, however, to explain the decline in erosion rate with C* 
observed in figure 7 for C* > 0.16. An obstacle such as bedrock, or the interaction 
of adjacent bends, may cause the Cartesian wavelength of a bend to decrease (so that 
k increases). This may push the bend from the unstable region into the stable region, 
as illustrated in figure 9(b). The outward erosion rate would decline, and finally 
reverse. The behaviour is intimately tied up with the form of (9), and cannot in 
principle be simplified to the form of (12). Reid (1983) in particular has emphasized 
the role of bedrock in blocking downstream bends on the Connecticut River, forcing 
them to shorten, and eventually deposit on the outside. 

For a typical illustration of the predicted timescale for change, the time required 
for a bend with 8, equal to  0.349 (20') to double in amplitude is computed from (44). 
A value of /I of 4 is used; other parameters are those estimated for the Beatton 
River in table 1. It is found that 378 years is required for a doubling in amplitude, 
a value in general accord with the scrollbar dates on figure 6. 

9. Conclusion 
The method of the two-time expansion is applied to the bend equation of Ikeda 

et al. (1983) in order to  study the time development of periodic meander bend trains. 
The equilibrium family of solutions delineated by Parker et al. (1983) is found to be 
unstable. According to  the analysis, bends with asufficiently long Cartesian wavelength 
grow until cutoff, and sufficiently short bends return to the straight state. The 
analysis is carried only to  the third order; numerical studies by Beck (1983b) on the 
bend equation, however, confirm the above conclusions. 

Both bend shape and the predicted rate of shifting appear to be in general accord 
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with the field observations of Hickin & Nanson (1975) and Nanson & Hickin 
(1 983). 

The bend equation is applicable to arbitrary amplitude, but the ratio of channel 
half-width to centreline radius of curvature must be modest. Short, sharp bends are 
often characterized by declining rates of outward migration, or even a reversal of the 
direction of migration. This behaviour may be due to curvature terms dropped in 
the derivation of the bend equation. It may also be associated with decrease in 
Cartesian wavelength due to, for example, an obstacle inhibiting downstream 
migration. The latter mechanism of stabilization can be explained qualitatively in 
the context of the present analysis. 

Certain criticisms are in order. The bend equation is based on Engelund’s (1974) 
treatment of bend flow. This simplified model possesses certain defects discussed by 
Smith & McLean (1985), and Blondeaux & Seminara (1985). Only constant flows and 
floodplains of erodibility are considered. The analysis is accurate only for a rather 
modest range of wavenumbers near the critical value. The interaction of non-periodic 
bends is not treated. 

Much of the above-mentioned research was performed during the first author’s 
annual summer tenure as a research hydrologist with the US Geological Survey. The 
research was supported by the National Science Foundation (Grant CEE8204953 and 
CEE8311721), and the Legislative Committee on Minnesota Resources. 
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